Abstract
AbstractDeglacial transitions of the middle to late Pleistocene (terminations) are linked to gradual changes in insolation accompanied by abrupt shifts in ocean circulation. However, the reason these deglacial abrupt events are so special compared with their sub-glacial-maximum analogues, in particular with respect to the exaggerated warming observed across Antarctica, remains unclear. Here we show that an increase in the relative importance of salt versus temperature stratification in the glacial deep South Atlantic decreases the potential cooling effect of waters that may be upwelled in response to abrupt perturbations in ocean circulation, as compared with sub-glacial-maximum conditions. Using a comprehensive coupled atmosphere–ocean general circulation model, we then demonstrate that an increase in deep-ocean salinity stratification stabilizes relatively warm waters in the glacial deep ocean, which amplifies the high southern latitude surface ocean temperature response to an abrupt weakening of the Atlantic meridional overturning circulation during deglaciation. The mechanism can produce a doubling in the net rate of warming across Antarctica on a multicentennial timescale when starting from full glacial conditions (as compared with interglacial or subglacial conditions) and therefore helps to explain the large magnitude and rapidity of glacial terminations during the late Quaternary.
Funder
Bundesministerium für Bildung und Forschung
RCUK | Natural Environment Research Council
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference106 articles.
1. Imbrie, J. et al. On the structure and origin of major glaciation cycles 2. The 100,000‐year cycle. Paleoceanography 8, 699–735 (1993).
2. Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997).
3. Milankovitch, M. Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem (Royal Serbian Academy, 1941).
4. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194, 1121–1132 (1976).
5. Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献