A Systematic Role for Extreme Ocean‐Atmosphere Oscillations in the Development of Glacial Conditions Since the Mid Pleistocene Transition

Author:

Barker Stephen1ORCID,Knorr Gregor2ORCID

Affiliation:

1. School of Earth and Environmental Sciences Cardiff University Cardiff UK

2. Alfred Wegener Institute (AWI) Helmholtz Center for Polar and Marine Research Bremerhaven Germany

Abstract

AbstractWe introduce a new hypothesis concerning the role of internal climate dynamics in the non‐linear transitions from interglacial to glacial (IG‐G) state since the Mid Pleistocene Transition (MPT). These transitions encompass large and abrupt changes in atmospheric CO2, ice volume, and temperature that we suggest involve critical interactions between insolation and high amplitude oscillations in ocean/atmosphere circulation patterns. Specifically, we highlight the large amplitude of millennial‐scale climate oscillations across the transition from Marine Isotope Stage (MIS) 5 to 4, which we argue led to amplified cooling of the deep ocean and we demonstrate that analogous episodes of extreme cooling systematically preceded glacial periods of the last 800 kyr. We suggest that such cooling necessitates a reconfiguration of the deep ocean to avoid a density paradox between northern and southern‐sourced deep waters (SSW), which could be accomplished by increasing the relative volume and or salinity of SSW, thus providing the necessary storage capacity for the subsequent (delayed) and relatively abrupt drawdown of CO2. We therefore explain the transient decoupling of Antarctic temperature from CO2 across MIS 5/4 as a direct consequence of millennial activity at that time. We further show that similar climatic decoupling typically occurred during times of low obliquity and was a ubiquitous feature of IG‐G transitions over the past 800 kyr, producing the appearance of bimodality in records of CO2, benthic δ18O and others. Finally we argue that the apparent lack of bimodality in the pre‐MPT record of benthic δ18O implies that the dynamics associated with IG‐G transitions changed across the MPT.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3