Rural populations facilitated early SARS-CoV-2 evolution and transmission in Missouri, USA
-
Published:2023-12-05
Issue:1
Volume:1
Page:
-
ISSN:2948-1767
-
Container-title:npj Viruses
-
language:en
-
Short-container-title:npj Viruses
Author:
Tang Cynthia Y.,Li Tao,Haynes Tricia A.,McElroy Jane A.,Ritter Detlef,Hammer Richard D.,Sampson Christopher,Webby Richard,Hang Jun,Wan Xiu-Feng
Abstract
AbstractIn the United States, rural populations comprise 60 million individuals and suffered from high COVID-19 disease burdens. Despite this, surveillance efforts are biased toward urban centers. Consequently, how rurally circulating SARS-CoV-2 viruses contribute toward emerging variants remains poorly understood. In this study, we aim to investigate the role of rural communities in the evolution and transmission of SARS-CoV-2 during the early pandemic. We collected 544 urban and 435 rural COVID-19-positive respiratory specimens from an overall vaccine-naïve population in Southwest Missouri between July and December 2020. Genomic analyses revealed 53 SARS-CoV-2 Pango lineages in our study samples, with 14 of these lineages identified only in rural samples. Phylodynamic analyses showed that frequent bi-directional diffusions occurred between rural and urban communities in Southwest Missouri, and that four out of seven Missouri rural-origin lineages spread globally. Further analyses revealed that the nucleocapsid protein (N):R203K/G204R paired substitutions, which were detected disproportionately across multiple Pango lineages, were more associated with urban than rural sequences. Positive selection was detected at N:204 among rural samples but was not evident in urban samples, suggesting that viruses may encounter distinct selection pressures in rural versus urban communities. This study demonstrates that rural communities may be a crucial source of SARS-CoV-2 evolution and transmission, highlighting the need to expand surveillance and resources to rural populations for COVID-19 mitigation.
Funder
U.S. National Library of Medicine
National Institute of Allergy and Infectious Diseases
Global Emerging Infections Surveillance Branch of the Armed Forces Health Surveillance Division
Publisher
Springer Science and Business Media LLC
Reference109 articles.
1. Davies Nicholas, G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).
2. Allen H. et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B.1.617.2): national case-control study. The Lancet Regional Health – Europe.
3. Meo, S. A., Meo, A. S., Al-Jassir, F. F. & Klonoff, D. C. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur. Rev. Med. Pharmacol. Sci. 25, 8012–8018 (2021).
4. Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).
5. Madhi, S. A. et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 384, 1885–1898 (2021).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献