Abstract
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients’ quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Biomedical Engineering,Medicine (miscellaneous)
Reference158 articles.
1. Schneider, S. A. & Obeso, J. A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci. 22, 205–220 (2015).
2. Hornykiewicz, O. Parkinson’s disease: from brain homogenate to treatment. Fed. Proc. 32, 183–190 (1973).
3. Wang, Q., Liu, Y. & Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4, 19 (2015).
4. More, S. V., Kumar, H., Kim, I. S., Song, S. Y. & Choi, D. K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm. 2013, 952375 (2013).
5. Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献