Predicting clinical outcomes using artificial intelligence and machine learning in neonatal intensive care units: a systematic review
Author:
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health
Link
https://www.nature.com/articles/s41372-022-01392-8.pdf
Reference116 articles.
1. White RD, Smith JA, Shepley MM. Recommended standards for newborn ICU design, eighth edition. J Perinatol. 2013;33:S2–16.
2. Ellsworth MA, Lang TR, Pickering BW, Herasevich V. Clinical data needs in the neonatal intensive care unit electronic medical record. BMC Med Inform Decis Mak. 2014;14:92.
3. De Georgia MA, Kaffashi F, Jacono FJ, Loparo KA. Information technology in critical care: review of monitoring and data acquisition systems for patient care and research. Sci World J. 2015;2015:1–9.
4. Strickland NH. PACS (picture archiving and communication systems): filmless radiology. Arch Dis Child BMJ Publ Group Ltd. 2000;83:82–6.
5. Fairchild KD, Aschner JL. HeRO monitoring to reduce mortality in NICU patients. Rrn Dove Press. 2012;2:65–76.
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sepsis Huddles in the Neonatal Intensive Care Unit: A Retrospective Cohort Study of Late-onset Infection Recognition and Severity Assessment;The Journal of Pediatrics;2024-09
2. Exploring Computational Techniques in Preprocessing Neonatal Physiological Signals for Detecting Adverse Outcomes: Scoping Review;Interactive Journal of Medical Research;2024-08-20
3. Combining artificial intelligence and conventional statistics to predict bronchopulmonary dysplasia in very preterm infants using routinely collected clinical variables;Pediatric Pulmonology;2024-08-16
4. Predicting childhood outcomes through standardizing disease definitions and promoting multicenter enrollment;Pediatric Research;2024-08-14
5. Strengths, weaknesses, opportunities and threats (SWOT) analysis of artificial intelligence adoption in nursing care;Journal of Medicine, Surgery, and Public Health;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3