Exploring Computational Techniques in Preprocessing Neonatal Physiological Signals for Detecting Adverse Outcomes: Scoping Review

Author:

Rahman JessicaORCID,Brankovic AidaORCID,Tracy MarkORCID,Khanna SankalpORCID

Abstract

Background Computational signal preprocessing is a prerequisite for developing data-driven predictive models for clinical decision support. Thus, identifying the best practices that adhere to clinical principles is critical to ensure transparency and reproducibility to drive clinical adoption. It further fosters reproducible, ethical, and reliable conduct of studies. This procedure is also crucial for setting up a software quality management system to ensure regulatory compliance in developing software as a medical device aimed at early preclinical detection of clinical deterioration. Objective This scoping review focuses on the neonatal intensive care unit setting and summarizes the state-of-the-art computational methods used for preprocessing neonatal clinical physiological signals; these signals are used for the development of machine learning models to predict the risk of adverse outcomes. Methods Five databases (PubMed, Web of Science, Scopus, IEEE, and ACM Digital Library) were searched using a combination of keywords and MeSH (Medical Subject Headings) terms. A total of 3585 papers from 2013 to January 2023 were identified based on the defined search terms and inclusion criteria. After removing duplicates, 2994 (83.51%) papers were screened by title and abstract, and 81 (0.03%) were selected for full-text review. Of these, 52 (64%) were eligible for inclusion in the detailed analysis. Results Of the 52 articles reviewed, 24 (46%) studies focused on diagnostic models, while the remainder (n=28, 54%) focused on prognostic models. The analysis conducted in these studies involved various physiological signals, with electrocardiograms being the most prevalent. Different programming languages were used, with MATLAB and Python being notable. The monitoring and capturing of physiological data used diverse systems, impacting data quality and introducing study heterogeneity. Outcomes of interest included sepsis, apnea, bradycardia, mortality, necrotizing enterocolitis, and hypoxic-ischemic encephalopathy, with some studies analyzing combinations of adverse outcomes. We found a partial or complete lack of transparency in reporting the setting and the methods used for signal preprocessing. This includes reporting methods to handle missing data, segment size for considered analysis, and details regarding the modification of the state-of-the-art methods for physiological signal processing to align with the clinical principles for neonates. Only 7 (13%) of the 52 reviewed studies reported all the recommended preprocessing steps, which could have impacts on the downstream analysis. Conclusions The review found heterogeneity in the techniques used and inconsistent reporting of parameters and procedures used for preprocessing neonatal physiological signals, which is necessary to confirm adherence to clinical and software quality management system practices, usefulness, and choice of best practices. Enhancing transparency in reporting and standardizing procedures will boost study interpretation and reproducibility and expedite clinical adoption, instilling confidence in the research findings and streamlining the translation of research outcomes into clinical practice, ultimately contributing to the advancement of neonatal care and patient outcomes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3