Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns

Author:

Goldstein ArielORCID,Grinstein-Dabush Avigail,Schain Mariano,Wang Haocheng,Hong Zhuoqiao,Aubrey Bobbi,Schain Mariano,Nastase Samuel A.ORCID,Zada ZaidORCID,Ham Eric,Feder Amir,Gazula Harshvardhan,Buchnik Eliav,Doyle Werner,Devore Sasha,Dugan Patricia,Reichart Roi,Friedman Daniel,Brenner Michael,Hassidim Avinatan,Devinsky OrrinORCID,Flinker AdeenORCID,Hasson UriORCID

Abstract

AbstractContextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language. To test this hypothesis, we densely record the neural activity patterns in the inferior frontal gyrus (IFG) of three participants using dense intracranial arrays while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation for each word (i.e., a brain embedding) in each patient. Using stringent zero-shot mapping we demonstrate that brain embeddings in the IFG and the DLM contextual embedding space have common geometric patterns. The common geometric patterns allow us to predict the brain embedding in IFG of a given left-out word based solely on its geometrical relationship to other non-overlapping words in the podcast. Furthermore, we show that contextual embeddings capture the geometry of IFG embeddings better than static word embeddings. The continuous brain embedding space exposes a vector-based neural code for natural language processing in the human brain.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Reference69 articles.

1. Lees, R. B. & Chomsky, N. Syntactic structures. Language 33, 375 (1957).

2. Fodor, J. A. The Language of Thought (Harvard Univ. Press, 1975).

3. Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

4. Pennington, J., Socher, R. & Manning, C. Glove: global vectors for word representation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (Association for Computational Linguistics, 2014).

5. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (eds. Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q.) (Curran Associates Inc., 2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3