Scale matters: Large language models with billions (rather than millions) of parameters better match neural representations of natural language

Author:

Hong Zhuoqiao,Wang Haocheng,Zada ZaidORCID,Gazula Harshvardhan,Turner David,Aubrey Bobbi,Niekerken Leonard,Doyle Werner,Devore SashaORCID,Dugan Patricia,Friedman Daniel,Devinsky Orrin,Flinker Adeen,Hasson UriORCID,Nastase Samuel A.ORCID,Goldstein Ariel

Abstract

AbstractRecent research has used large language models (LLMs) to study the neural basis of naturalistic language processing in the human brain. LLMs have rapidly grown in complexity, leading to improved language processing capabilities. However, neuroscience researchers haven’t kept up with the quick progress in LLM development. Here, we utilized several families of transformer-based LLMs to investigate the relationship between model size and their ability to capture linguistic information in the human brain. Crucially, a subset of LLMs were trained on a fixed training set, enabling us to dissociate model size from architecture and training set size. We used electrocorticography (ECoG) to measure neural activity in epilepsy patients while they listened to a 30-minute naturalistic audio story. We fit electrode-wise encoding models using contextual embeddings extracted from each hidden layer of the LLMs to predict word-level neural signals. In line with prior work, we found that larger LLMs better capture the structure of natural language and better predict neural activity. We also found a log-linear relationship where the encoding performance peaks in relatively earlier layers as model size increases. We also observed variations in the best-performing layer across different brain regions, corresponding to an organized language processing hierarchy.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Antonello, R. , Vaidya, A. , & Huth, A. G. (2023). Scaling laws for language encoding models in fMRI. In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/2305.11863

2. Bommasani, R. , Hudson, D. A. , Adeli, E. , Altman, R. , Arora, S. , von Arx, S. , Bernstein, M. S. , Bohg, J. , Bosselut, A. , Brunskill, E. , Brynjolfsson, E. , Buch, S. , Card, D. , Castellon, R. , Chatterji, N. , Chen, A. , Creel, K. , Davis, J. Q. , Demszky, D. , … Liang, P. (2021). On the Opportunities and Risks of Foundation Models. In arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2108.07258

3. Brown, T. B. , Mann, B. , Ryder, N. , Subbiah, M. , Kaplan, J. , Dhariwal, P. , Neelakantan, A. , Shyam, P. , Sastry, G. , Askell, A. , Agarwal, S. , Herbert-Voss, A. , Krueger, G. , Henighan, T. , Child, R. , Ramesh, A. , Ziegler, D. M. , Wu, J. , Winter, C. , … Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, abs/2005.14165. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

4. Cantlon, J. F. , & Piantadosi, S. T . (2024). Uniquely human intelligence arose from expanded information capacity. Nature Reviews Psychology, 1–19.

5. GPT-2’s activations predict the degree of semantic comprehension in the human brain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3