Abstract
AbstractMolecular photoswitches transform light energy into reversible structural changes. Their combination with known pharmacophores often allows for photomodulation of the biological activity. The effort to apply such compounds in photopharmacology as light-activated pro-drugs is, however, hampered by serious activity reduction upon pharmacophore modifications, or limited biostability. Here we report that a potent antimitotic agent plinabulin and its derivatives demonstrate up to 56-fold reversible activity photomodulation. Alternatively, irreversible photoactivation with cyan light can enhance the cytotoxicity up to three orders of magnitude—all without compromising the original activity level, as the original pharmacophore structure is unchanged. This occurs due to the presence of a peptide-derived photoswitchable motif hemipiperazine inside the plinabulin scaffold. Furthermore, we systematically describe photochromism of these thermally stable and biocompatible hemipiperazines, as well as a photoswitchable fluorophore derived from plinabulin. The latter may further expand the applicability of hemipiperazine photochromism towards super-resolution microscopy.
Funder
Deutsche Forschungsgemeinschaft
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Jürgen Manchot Stiftung
Evonik Stiftung
YIN Grant KIT Karlsruhe
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献