Gain of Function Recyclable Photoswitches: Reversible Simultaneous Substitution and Photochromism Generation

Author:

Zitzmann Max1,Fröhling Matthias1,Dube Henry1ORCID

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany.

Abstract

AbstractThe use of molecular photoswitches has spread to virtually every field of pure and applied chemistry because of the extraordinary level of control they provide over the behavior of matter at the smallest scales. Photoswitches possess at least two different states with distinct structures and/or electronics and further functionalization of their core chromophore structures is needed to tailor them for a specific application. In this work we present a different concept for the generation and use of molecular photoswitches. It allows not only simultaneous establishment of photochromism and functionalization, but also full recyclability of a non‐photochromic precursor material. Using a high‐yielding and reversible ammonium salt formation, a functional group is introduced into a symmetric precursor while at the same time a strong electronic push‐pull character is established in the structure. The resulting desymmetrization leads to efficient photoswitching capacity and the functional group can be fully removed subsequently by a simple heating step recovering the precursor for another functionalization round. We finally demonstrate feasibility of this concept over two consecutive closed loop functionalization/photoswitching/recovery steps. This concept offers great potential in any chemical research and application driven area but especially for the creation of responsive reprogrammable materials, no‐background photoswitch labeling, and sustainable chemistry.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3