Abstract
AbstractReconstructing historical atmospheric oxygen (O2) levels at finer temporal resolution is a top priority for exploring the evolution of life on Earth. This goal, however, is challenged by gaps in traditionally employed sediment-hosted geochemical proxy data. Here, we propose an independent strategy—machine learning with global mafic igneous geochemistry big data to explore atmospheric oxygenation over the last 4.0 billion years. We observe an overall two-step rise of atmospheric O2 similar to the published curves derived from independent sediment-hosted paleo-oxybarometers but with a more detailed fabric of O2 fluctuations superimposed. These additional, shorter-term fluctuations are also consistent with previous but less well-established suggestions of O2 variability. We conclude from this agreement that Earth’s oxygenated atmosphere may therefore be at least partly a natural consequence of mantle cooling and specifically that evolving mantle melts collectively have helped modulate the balance of early O2 sources and sinks.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献