Abstract
AbstractTropical forests are pivotal to global climate and biogeochemical cycles, yet the geographic distribution of nutrient limitation to plants and microbes across the biome is unresolved. One long-standing generalization is that tropical montane forests are nitrogen (N)-limited whereas lowland forests tend to be N-rich. However, empirical tests of this hypothesis have yielded equivocal results. Here we evaluate the topographic signature of the ecosystem-level tropical N cycle by examining climatic and geophysical controls of surface soil N content and stable isotopes (δ15N) from elevational gradients distributed across tropical mountains globally. We document steep increases in soil N concentration and declining δ15N with increasing elevation, consistent with decreased microbial N processing and lower gaseous N losses. Temperature explained much of the change in N, with an apparent temperature sensitivity (Q10) of ~1.9. Although montane forests make up 11% of forested tropical land area, we estimate they account for >17% of the global tropical forest soil N pool. Our findings support the existence of widespread microbial N limitation across tropical montane forest ecosystems and high sensitivity to climate warming.
Funder
National Science Foundation of the United States
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献