Bounds to electron spin qubit variability for scalable CMOS architectures

Author:

Cifuentes Jesús D.ORCID,Tanttu TuomoORCID,Gilbert WillORCID,Huang Jonathan Y.ORCID,Vahapoglu EnsarORCID,Leon Ross C. C.,Serrano SantiagoORCID,Otter Dennis,Dunmore Daniel,Mai Philip Y.,Schlattner Frédéric,Feng MengKeORCID,Itoh KoheiORCID,Abrosimov NikolayORCID,Pohl Hans-Joachim,Thewalt Michael,Laucht ArneORCID,Yang Chih HwanORCID,Escott Christopher C.,Lim Wee Han,Hudson Fay E.ORCID,Rahman RajibORCID,Dzurak Andrew S.ORCID,Saraiva AndreORCID

Abstract

AbstractSpins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

Funder

Sydney Quantum Academy

Centre of Excellence for Electromaterials Science, Australian Research Council

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3