Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

Author:

Tanttu TuomoORCID,Lim Wee Han,Huang Jonathan Y.ORCID,Dumoulin Stuyck Nard,Gilbert WillORCID,Su Rocky Y.,Feng MengKeORCID,Cifuentes Jesus D.ORCID,Seedhouse Amanda E.,Seritan Stefan K.ORCID,Ostrove Corey I.ORCID,Rudinger Kenneth M.ORCID,Leon Ross C. C.ORCID,Huang Wister,Escott Christopher C.,Itoh Kohei M.ORCID,Abrosimov Nikolay V.ORCID,Pohl Hans-Joachim,Thewalt Michael L. W.,Hudson Fay E.ORCID,Blume-Kohout RobinORCID,Bartlett Stephen D.ORCID,Morello AndreaORCID,Laucht ArneORCID,Yang Chih HwanORCID,Saraiva AndreORCID,Dzurak Andrew S.ORCID

Abstract

AbstractAchieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Department of Education and Training | Australian Research Council

University of Sydney

University of New South Wales

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays;Physical Review B;2024-09-10

2. Entangling gates on degenerate spin qubits dressed by a global field;Nature Communications;2024-09-03

3. Electronic Correlations in Multielectron Silicon Quantum Dots;2024 IEEE 24th International Conference on Nanotechnology (NANO);2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3