Suppressing quantum errors by scaling a surface code logical qubit
Author:
, Acharya Rajeev, Aleiner IgorORCID, Allen Richard, Andersen Trond I., Ansmann MarkusORCID, Arute Frank, Arya Kunal, Asfaw Abraham, Atalaya Juan, Babbush Ryan, Bacon Dave, Bardin Joseph C.ORCID, Basso JoaoORCID, Bengtsson Andreas, Boixo SergioORCID, Bortoli Gina, Bourassa AlexandreORCID, Bovaird Jenna, Brill Leon, Broughton Michael, Buckley Bob B., Buell David A., Burger Tim, Burkett BrianORCID, Bushnell Nicholas, Chen Yu, Chen Zijun, Chiaro Ben, Cogan Josh, Collins Roberto, Conner Paul, Courtney William, Crook Alexander L., Curtin Ben, Debroy Dripto M., Del Toro Barba AlexanderORCID, Demura SeanORCID, Dunsworth Andrew, Eppens DanielORCID, Erickson Catherine, Faoro Lara, Farhi Edward, Fatemi Reza, Flores Burgos Leslie, Forati Ebrahim, Fowler Austin G., Foxen Brooks, Giang William, Gidney Craig, Gilboa Dar, Giustina Marissa, Grajales Dau Alejandro, Gross Jonathan A., Habegger SteveORCID, Hamilton Michael C., Harrigan Matthew P.ORCID, Harrington Sean D.ORCID, Higgott Oscar, Hilton Jeremy, Hoffmann MarkusORCID, Hong Sabrina, Huang Trent, Huff Ashley, Huggins William J.ORCID, Ioffe Lev B., Isakov Sergei V., Iveland Justin, Jeffrey Evan, Jiang Zhang, Jones Cody, Juhas PavolORCID, Kafri Dvir, Kechedzhi Kostyantyn, Kelly JulianORCID, Khattar Tanuj, Khezri Mostafa, Kieferová Mária, Kim Seon, Kitaev Alexei, Klimov Paul V., Klots Andrey R., Korotkov Alexander N., Kostritsa Fedor, Kreikebaum John Mark, Landhuis DavidORCID, Laptev Pavel, Lau Kim-Ming, Laws Lily, Lee Joonho, Lee Kenny, Lester Brian J., Lill Alexander, Liu Wayne, Locharla Aditya, Lucero Erik, Malone Fionn D., Marshall JeffreyORCID, Martin Orion, McClean Jarrod R.ORCID, McCourt Trevor, McEwen MattORCID, Megrant AnthonyORCID, Meurer Costa Bernardo, Mi XiaoORCID, Miao Kevin C., Mohseni Masoud, Montazeri ShirinORCID, Morvan AlexisORCID, Mount Emily, Mruczkiewicz WojciechORCID, Naaman OferORCID, Neeley MatthewORCID, Neill CharlesORCID, Nersisyan Ani, Neven HartmutORCID, Newman Michael, Ng Jiun HowORCID, Nguyen Anthony, Nguyen Murray, Niu Murphy Yuezhen, O’Brien Thomas E., Opremcak Alex, Platt John, Petukhov Andre, Potter Rebecca, Pryadko Leonid P., Quintana Chris, Roushan PedramORCID, Rubin Nicholas C., Saei Negar, Sank DanielORCID, Sankaragomathi Kannan, Satzinger Kevin J.ORCID, Schurkus Henry F.ORCID, Schuster Christopher, Shearn Michael J., Shorter Aaron, Shvarts Vladimir, Skruzny Jindra, Smelyanskiy Vadim, Smith W. Clarke, Sterling George, Strain Doug, Szalay Marco, Torres Alfredo, Vidal Guifre, Villalonga Benjamin, Vollgraff Heidweiller CatherineORCID, White Theodore, Xing Cheng, Yao Z. Jamie, Yeh PingORCID, Yoo Juhwan, Young Grayson, Zalcman AdamORCID, Zhang Yaxing, Zhu NingfengORCID
Abstract
AbstractPractical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction1,2 offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical error probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7 × 10−6 logical error per cycle floor set by a single high-energy event (1.6 × 10−7 excluding this event). We accurately model our experiment, extracting error budgets that highlight the biggest challenges for future systems. These results mark an experimental demonstration in which quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference59 articles.
1. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995). 2. Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997). 3. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). 4. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999). 5. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).
Cited by
313 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|