Abstract
AbstractUnderstanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.
Funder
European Commission
DH | National Institute for Health Research
RCUK | Medical Research Council
RCUK | Engineering and Physical Sciences Research Council
RCUK | Science and Technology Facilities Council
RCUK | Economic and Social Research Council
Scottish Government Health and Social Care Directorate
Wellcome Trust
NHS Blood and Transplant
Gouvernement du Canada | Canadian Institutes of Health Research
European Federation of Pharmaceutical Industries and Associations
British Heart Foundation
Health Data Research UK Department of Health and Social Care (England) Health and Social Care Research and Development Division (Welsh Government) Public Health Agency
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献