Memristor-based storage system with convolutional autoencoder-based image compression network

Author:

Feng YulinORCID,Zhang Yizhou,Zhou ZhengORCID,Huang PengORCID,Liu LifengORCID,Liu Xiaoyan,Kang JinfengORCID

Abstract

AbstractThe exponential growth of various complex images is putting tremendous pressure on storage systems. Here, we propose a memristor-based storage system with an integrated near-storage in-memory computing-based convolutional autoencoder compression network to boost the energy efficiency and speed of the image compression/retrieval and improve the storage density. We adopt the 4-bit memristor arrays to experimentally demonstrate the functions of the system. We propose a step-by-step quantization aware training scheme and an equivalent transformation for transpose convolution to improve the system performance. The system exhibits a high (>33 dB) peak signal-to-noise ratio in the compression and decompression of the ImageNet and Kodak24 datasets. Benchmark comparison results show that the 4-bit memristor-based storage system could reduce the latency and energy consumption by over 20×/5.6× and 180×/91×, respectively, compared with the server-grade central processing unit-based/the graphics processing unit-based processing system, and improve the storage density by more than 3 times.

Funder

National Natural Science Foundation of China

111 Project

National Sci-Tech Innovation 2030

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3