Abstract
AbstractExtraction of low concentration linear alkanes (C5-C7) from various isomers is critical for the petrochemical industry. At present, the separation of alkane isomers is mainly accomplished by distillation, which results in substantial energy expenditure. Metal-organic frameworks (MOFs) with well-tailored nanopores have been demonstrated to be capable of realizing molecule-level separation. In this study, oriented HKUST-1 membranes are formulated according to the morphology-biased principle and finally realized with a low dose synthesis method for terminating undesired crystal nucleation and growth. The fully exposed triangular sieving pore array of the membrane induces configuration entropic diffusion to split linear alkanes from mono-branched and di-branched isomers as well as their cyclical counterparts. Typically, the current separation technique consumes 91% less energy than vacuum distillation. Furthermore, our membranes can realize one-step extraction of normal-pentane, normal-hexane and normal-heptane from a ten-component alkane isomer solution that mimics light naphtha.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献