Augmenting interpretable models with large language models during training

Author:

Singh ChandanORCID,Askari Armin,Caruana Rich,Gao Jianfeng

Abstract

AbstractRecent large language models (LLMs), such as ChatGPT, have demonstrated remarkable prediction performance for a growing array of tasks. However, their proliferation into high-stakes domains and compute-limited settings has created a burgeoning need for interpretability and efficiency. We address this need by proposing Aug-imodels, a framework for leveraging the knowledge learned by LLMs to build extremely efficient and interpretable prediction models. Aug-imodels use LLMs during fitting but not during inference, allowing complete transparency and often a speed/memory improvement of greater than 1000x for inference compared to LLMs. We explore two instantiations of Aug-imodels in natural-language processing: Aug-Linear, which augments a linear model with decoupled embeddings from an LLM and Aug-Tree, which augments a decision tree with LLM feature expansions. Across a variety of text-classification datasets, both outperform their non-augmented, interpretable counterparts. Aug-Linear can even outperform much larger models, e.g. a 6-billion parameter GPT-J model, despite having 10,000x fewer parameters and being fully transparent. We further explore Aug-imodels in a natural-language fMRI study, where they generate interesting interpretations from scientific data.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference100 articles.

1. Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

2. Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. https://arxiv.org/abs/2303.12712 (2023).

3. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805 (2018).

4. Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016).

5. Kornblith, A. E. et al. Predictability and stability testing to assess clinical decision instrument performance for children after blunt torso trauma. PLOS Digit. Health https://doi.org/10.1371/journal.pdig.0000076 (2022).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3