Predictability and stability testing to assess clinical decision instrument performance for children after blunt torso trauma

Author:

Kornblith Aaron E.,Singh Chandan,Devlin Gabriel,Addo Newton,Streck Christian J.,Holmes James F.,Kuppermann Nathan,Grupp-Phelan Jacqueline,Fineman Jeffrey,Butte Atul J.,Yu BinORCID

Abstract

Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability Computability Stability (PCS) data science framework, potentially increasing its chance of a successful external validation. Materials & methods We performed a secondary analysis of two prospectively collected datasets: PECARN (12,044 children from 20 emergency departments) and an independent external validation dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS CDIs developed using the PECARN dataset. External validation was then measured on the PedSRC dataset. Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal tenderness) were found to be stable. A CDI using only these three variables would achieve lower sensitivity than the original PECARN CDI with seven variables on internal PECARN validation but achieve the same performance on external PedSRC validation (sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same on external PedSRC validation (sensitivity 96.8% and specificity 44%). Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor variables prior to external validation. We found that the 3 stable predictor variables represented all of the PECARN CDI’s predictive performance on independent external validation. The PCS framework offers a less resource-intensive method than prospective validation to vet CDIs before external validation. We also found that the PECARN CDI will generalize well to new populations and should be prospectively externally validated. The PCS framework offers a potential strategy to increase the chance of a successful (costly) prospective validation.

Funder

National Science Foundation

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3