Abstract
AbstractUltra-long metal nanowires and their facile fabrication have been long sought after as they promise to offer substantial improvements of performance in numerous applications. However, ultra-long metal ultrafine/nanowires are beyond the capability of current manufacturing techniques, which impose limitations on their size and aspect ratio. Here we show that the limitations imposed by fluid instabilities with thermally drawn nanowires can be alleviated by adding tungsten carbide nanoparticles to the metal core to arrive at wire lengths more than 30 cm with diameters as low as 170 nm. The nanoparticles support thermal drawing in two ways, by increasing the viscosity of the metal and lowering the interfacial energy between the boron silicate and zinc phase. This mechanism of suppressing fluid instability by nanoparticles not only enables a scalable production of ultralong metal nanowires, but also serves for widespread applications in other fluid-related fields.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献