Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre-Based Metamaterials

Author:

Argyros Alexander1

Affiliation:

1. Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

This paper reviews the topic of microstructured polymer fibres in the fields in which these have been utilised: microstructured optical fibres, terahertz waveguides, and fibre-drawn metamaterials. Microstructured polymer optical fibres were initially investigated in the context of photonic crystal fibre research, and several unique features arising from the combination of polymer and microstructure were identified. This lead to investigations in sensing, particularly strain sensing based on gratings, and short-distance data transmission. The same principles have been extended to waveguides at longer wavelengths, for terahertz frequencies, where microstructured polymer waveguides offer the possibility for low-loss flexible waveguides for this frequency region. Furthermore, the combination of microstructured polymer fibres and metals is being investigated in the fabrication of metamaterials, as a scalable method for their manufacture. This paper will review the materials and fabrication methods developed, past and current research in these three areas, and future directions of this fabrication platform.

Publisher

Hindawi Limited

Subject

General Medicine,General Chemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3