Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems

Author:

Koala Ratmalgre A. S. D.1ORCID,Fujita Masayuki1,Nagatsuma Tadao1

Affiliation:

1. Information Photonics Group , Div. Adv. Electronics & Optical Science , D348 Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka , Japan

Abstract

Abstract Recent advances in silicon (Si) microphotonics have enabled novel devices for the terahertz (THz) range based on dielectric waveguides. In the past couple of years, dielectric waveguides have become commonplace for THz systems to mitigate issues in efficiency, size, and cost of integration and packaging using metal-based waveguides. Therefore, THz systems have progressively evolved from cumbersome collections of discreet components to THz-wave integrated circuits. This gradual transition of THz systems from numerous components to compact integrated circuits has been facilitated at each step by incredible advances in all-Si waveguides allowing low-loss, low dispersion, and single-mode waveguiding operation. As such, all-Si waveguides position themselves as highly efficient interconnects to realize THz integrated circuits and further large-scale integration in the THz range. This review article intends to reevaluate the evolution stages of THz integrated circuits and systems based on all-Si waveguides.

Funder

Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency

Grant-in-Aid for Scientific Research

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3