Stress promotes RNA G-quadruplex folding in human cells

Author:

Kharel PrakashORCID,Fay Marta,Manasova Ekaterina V.,Anderson Paul J.,Kurkin Alexander V.,Guo Junjie U.ORCID,Ivanov PavelORCID

Abstract

AbstractGuanine (G)-rich nucleic acids can fold into G-quadruplex (G4) structures under permissive conditions. Although many RNAs contain sequences that fold into RNA G4s (rG4s) in vitro, their folding and functions in vivo are not well understood. In this report, we showed that the folding of putative rG4s in human cells into rG4 structures is dynamically regulated under stress. By using high-throughput dimethylsulfate (DMS) probing, we identified hundreds of endogenous stress-induced rG4s, and validated them by using an rG4 pull-down approach. Our results demonstrate that stress-induced rG4s are enriched in mRNA 3′-untranslated regions and enhance mRNA stability. Furthermore, stress-induced rG4 folding is readily reversible upon stress removal. In summary, our study revealed the dynamic regulation of rG4 folding in human cells and suggested that widespread rG4 motifs may have a global regulatory impact on mRNA stability and cellular stress response.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

New York Stem Cell Foundation, NYCSF−Robertson Investigator

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3