Repurposing tRNA isodecoders for non-canonical functions via tRNA cleavage

Author:

Bhatter Nupur,Advani Vivek M.,Takenaka Yoshika,Lyons Shawn M.,Akiyama Yasutoshi,Anderson Paul J.,Ivanov Pavel

Abstract

AbstractTransfer RNAs (tRNAs) are the key adaptor molecules aiding protein synthesis. Hundreds of tRNA genes are found in the human genome but the biological significance of this genetic excess is still enigmatic. The tRNA repertoires are variable between tissues and cells as well as during development. Such variations can only be partially explained by the correlation to the physiological needs in protein production, e.g. by changes in the expression of tRNA isoacceptor sets (tRNAs charged with the same amino acid but bearing different anticodons). However, changes in the expression levels of individual isodecoders (tRNAs with the same anticodon) are less understood. Besides canonical functions in mRNA translation, tRNAs are implicated in non-canonical functions unrelated to protein synthesis. tRNAs are rich source of small non-protein coding RNAs called tRNA-derived RNAs (tDRs), which include tRNA-derived stress-induced RNAs (tiRNAs) formed in response to stress. Here, we show that tiRNAs derived from isodecoders different in a single nucleotide can also differ in their activities. Specifically, we show that isodecoder sets for tRNAHis-GTG, tRNAGly-GCCand tRNACys-GCAare cleaved by ribonucleases to yield 5’-tiRNAs showing differential activity towards mRNA reporter translation. Our data propose a model where cleavage repurposes specific tRNA isodecoders for non-canonical functions.Significance StatementThe human genome encodes hundreds of transfer RNA (tRNA) genes to decode 61 codons. The basis for such genetic redundancy is unclear but the increase in the number of tRNA genes goes in concert with the complexity of an organism. While changes in the expression of isoacceptor tRNA pools can reflect adaptation to demanding protein synthesis needs and/or codon usage, the variations in the expression of the individual tRNA isodecoders are documented but poorly understood. Such expression variations are hypothesized to contribute to non-canonical tRNA functions, yet physiological relevance remains ambiguous. We report here that specific tRNA isodecoders can be functionally repurposed through cleavage that produces tRNA-derived RNAs (tDRs). The repurposing employs nucleotide variations in isodecoders leading to the production of distinct sets of tDRs with variable bioactivities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3