Abstract
Abstract
Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber-physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference39 articles.
1. Poovendran, R. Cyber-physical systems: close encounters between two parallel worlds [point of view]. Proc. IEEE 98, 1363–1366 (2010).
2. Antsaklis, P. A brief introduction to the theory and applications of hybrid systems. Proc. IEEE 88, 879–887 (2000).
3. Aihara, K. & Suzuki, H. Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 368, 4893–4914 (2010).
4. Wooden, D., Powers, M., Egerstedt, M., Christensen, H. & Balch, T. A modular, hybrid system architecture for autonomous, urban driving. J. Aerosp. Comput. Inf. Commun. 4, 1047–1058 (2007).
5. Wang, W. X., Lai, Y. C. & Grebogi, C. Data based identification and prediction of nonlinear and complex dynamical systems. Phys. Rep. 644, 1–76 (2016).
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献