Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts

Author:

Ogata Soshiro,Takegami Misa,Ozaki Taira,Nakashima Takahiro,Onozuka DaisukeORCID,Murata Shunsuke,Nakaoku Yuriko,Suzuki Koyu,Hagihara Akihito,Noguchi Teruo,Iihara Koji,Kitazume Keiichi,Morioka Tohru,Yamazaki Shin,Yoshida TakahiroORCID,Yamagata YoshikiORCID,Nishimura KunihiroORCID

Abstract

AbstractThis study aims to develop and validate prediction models for the number of all heatstroke cases, and heatstrokes of hospital admission and death cases per city per 12 h, using multiple weather information and a population-based database for heatstroke patients in 16 Japanese cities (corresponding to around a 10,000,000 population size). In the testing dataset, mean absolute percentage error of generalized linear models with wet bulb globe temperature as the only predictor and the optimal models, respectively, are 43.0% and 14.8% for spikes in the number of all heatstroke cases, and 37.7% and 10.6% for spikes in the number of heatstrokes of hospital admission and death cases. The optimal models predict the spikes in the number of heatstrokes well by machine learning methods including non-linear multivariable predictors and/or under-sampling and bagging. Here, we develop prediction models whose predictive performances are high enough to be implemented in public health settings.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference24 articles.

1. Imada, Y., Watanabe, M., Kawase, H., Shiogama, H. & Arai, M. The July 2018 high temperature event in Japan could not have happened without human-induced global warming. SOLA 15A, 8–12 (2019).

2. Bouchama, A. & Knochel, J. P. Medical progress: heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002).

3. Patz, J. A., Frumkin, H., Holloway, T., Vimont, D. J. & Haines, A. Climate change: challenges and opportunities for global health. JAMA 312, 1565–1580 (2014).

4. Russo, S., Sillmann, J. & Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 7, 1–7 (2017).

5. IPCC, Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al.) pp. 1–32. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3