Leveraging data science and machine learning for urban climate adaptation in two major African cities: a HE2AT Center study protocol

Author:

Jack ChristopherORCID,Parker CraigORCID,Kouakou Yao EtienneORCID,Joubert Bonnie,McAllister Kimberly A,Ilias Maliha,Maimela GloriaORCID,Chersich Matthew,Makhanya Sibusisiwe,Luchters Stanley,Makanga Prestige Tatenda,Vos Etienne,Ebi Kristie L,Koné Brama,Waljee Akbar K,Cissé Guéladio

Abstract

IntroductionAfrican cities, particularly Abidjan and Johannesburg, face challenges of rapid urban growth, informality and strained health services, compounded by increasing temperatures due to climate change. This study aims to understand the complexities of heat-related health impacts in these cities. The objectives are: (1) mapping intraurban heat risk and exposure using health, socioeconomic, climate and satellite imagery data; (2) creating a stratified heat–health forecast model to predict adverse health outcomes; and (3) establishing an early warning system for timely heatwave alerts. The ultimate goal is to foster climate-resilient African cities, protecting disproportionately affected populations from heat hazards.Methods and analysisThe research will acquire health-related datasets from eligible adult clinical trials or cohort studies conducted in Johannesburg and Abidjan between 2000 and 2022. Additional data will be collected, including socioeconomic, climate datasets and satellite imagery. These resources will aid in mapping heat hazards and quantifying heat–health exposure, the extent of elevated risk and morbidity. Outcomes will be determined using advanced data analysis methods, including statistical evaluation, machine learning and deep learning techniques.Ethics and disseminationThe study has been approved by the Wits Human Research Ethics Committee (reference no: 220606). Data management will follow approved procedures. The results will be disseminated through workshops, community forums, conferences and publications. Data deposition and curation plans will be established in line with ethical and safety considerations.

Funder

National Institutes of Health

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3