Climate-driven invasion and incipient warnings of kelp ecosystem collapse

Author:

Ling Scott D.ORCID,Keane John P.ORCID

Abstract

AbstractClimate change is progressively redistributing species towards the Earth’s poles, indicating widespread potential for ecosystem collapse. Detecting early-warning-signals and enacting adaptation measures is therefore a key imperative for humanity. However, detecting early-warning signals has remained elusive and has focused on exceptionally high-frequency and/ or long-term time-series, which are generally unattainable for most ecosystems that are under-sampled and already impacted by warming. Here, we show that a catastrophic phase-shift in kelp ecosystems, caused by range-extension of an overgrazing sea urchin, also propagates poleward. Critically, we show that incipient spatial-pattern-formations of kelp overgrazing are detectable well-in-advance of collapse along temperate reefs in the ocean warming hotspot of south-eastern Australia. Demonstrating poleward progression of collapse over 15 years, these early-warning ‘incipient barrens’ are now widespread along 500 km of coast with projections indicating that half of all kelp beds within this range-extension region will collapse by ~2030. Overgrazing was positively associated with deep boulder-reefs, yet negatively associated with predatory lobsters and subordinate abalone competitors, which have both been intensively fished. Climate-driven collapse of ecosystems is occurring; however, by looking equatorward, space-for-time substitutions can enable practical detection of early-warning spatial-pattern-formations, allowing local climate adaptation measures to be enacted in advance.

Funder

Sustainable Marine Research Collaboration Agreement, Tasmanian State Government

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3