Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis

Author:

Ogunmowo Tyler H.,Jing Haoyuan,Raychaudhuri Sumana,Kusick Grant F.ORCID,Imoto Yuuta,Li Shuo,Itoh Kie,Ma Ye,Jafri Haani,Dalva Matthew B.ORCID,Chapman Edwin R.ORCID,Ha TaekjipORCID,Watanabe ShigekiORCID,Liu JianORCID

Abstract

AbstractCompensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

National Science Foundation

McKnight Endowment Fund for Neuroscience

Esther A. and Joseph Klingenstein Fund

Vallee Foundation

Alfred P. Sloan Foundation

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Japan Society for the Promotion of Science London

U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse

Howard Hughes Medical Institute

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3