Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies

Author:

Mei WenxinORCID,Liu Zhi,Wang Chengdong,Wu Chuang,Liu Yubin,Liu Pengjie,Xia Xudong,Xue Xiaobin,Han Xile,Sun Jinhua,Xiao Gaozhi,Tam Hwa-yaw,Albert Jacques,Wang QingsongORCID,Guo TuanORCID

Abstract

AbstractOperando monitoring of complex physical and chemical activities inside rechargeable lithium-ion batteries during thermal runaway is critical to understanding thermal runaway mechanisms and giving early warning of safety-related failure. However, most existing sensors cannot survive during such extremely hazardous thermal runaway processes (temperature up to 500 °C accompanied by fire and explosion). To address this, we develop a compact and multifunctional optical fiber sensor (12 mm in length and 125 µm in diameter) capable of insertion into commercial 18650 cells to continuously monitor internal temperature and pressure effects during cell thermal runaway. We observe a stable and reproducible correlation between the cell thermal runaway and the optical response. The sensor’s signal shows two internal pressure peaks corresponding to safety venting and initiation of thermal runaway. Further analysis reveals that a scalable solution for predicting imminent thermal runaway is the detection of the abrupt turning range of the differential curves of cell temperature and pressure, which corresponds to an internal transformation between the cell reversible and irreversible reactions. By raising an alert even before safety venting, this new operando measurement tool can provide crucial capabilities in cell safety assessment and warning of thermal runaway.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3