Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors
-
Published:2021-11-11
Issue:1
Volume:12
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Pandya Raj, Chen Richard Y. S., Gu Qifei, Sung Jooyoung, Schnedermann ChristophORCID, Ojambati Oluwafemi S.ORCID, Chikkaraddy RohitORCID, Gorman JeffreyORCID, Jacucci GianniORCID, Onelli Olimpia D., Willhammar TomORCID, Johnstone Duncan N., Collins Sean M.ORCID, Midgley Paul A., Auras FlorianORCID, Baikie Tomi, Jayaprakash RahulORCID, Mathevet Fabrice, Soucek Richard, Du Matthew, Alvertis Antonios M.ORCID, Ashoka Arjun, Vignolini SilviaORCID, Lidzey David G.ORCID, Baumberg Jeremy J.ORCID, Friend Richard H.ORCID, Barisien Thierry, Legrand Laurent, Chin Alex W., Yuen-Zhou JoelORCID, Saikin Semion K., Kukura PhilippORCID, Musser Andrew J.ORCID, Rao AkshayORCID
Abstract
AbstractStrong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference93 articles.
1. Herrera, F. & Spano, F. C. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116, 238301 (2016). 2. Schäfer, C., Ruggenthaler, M., Appel, H. & Rubio, A. Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry. Proc. Natl Acad. Sci. USA 116, 4883–4892 (2019). 3. Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019). 4. Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004). 5. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371–375 (2010).
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|