Affiliation:
1. Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
2. Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
Abstract
AbstractExciton polaritons, arising from the interaction of electronic transitions with confined electromagnetic fields, have emerged as a powerful tool to manipulate the properties of organic materials. However, standard experimental and theoretical approaches overlook the significant energetic disorder present in most materials now studied. Using the conjugated polymer P3HT as a model platform, the degree of energetic disorder is systematically tuned and a corresponding redistribution of photonic character within the polariton manifold is observed. Based on these subtle spectral features, a more generalized approach is developed to describe strong light‐matter coupling in disordered systems that captures the key spectroscopic observables and provides a description of the rich manifold of states intermediate between bright and dark. Applied to a wide range of organic systems, the method challenges prevailing notions about ultrastrong coupling and whether it can be achieved with broad, disordered absorbers.
Funder
Air Force Office of Scientific Research
American Chemical Society Petroleum Research Fund
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献