Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder
-
Published:2021-05-07
Issue:1
Volume:12
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Kour SukhleenORCID, Rajan Deepa S., Fortuna Tyler R., Anderson Eric N., Ward Caroline, Lee Youngha, Lee Sangmoon, Shin Yong Beom, Chae Jong-Hee, Choi MurimORCID, Siquier Karine, Cantagrel VincentORCID, Amiel Jeanne, Stolerman Elliot S., Barnett Sarah S., Cousin Margot A.ORCID, Castro Diana, McDonald Kimberly, Kirmse Brian, Nemeth Andrea H., Rajasundaram Dhivyaa, Innes A. MicheilORCID, Lynch Danielle, Frosk PatrickORCID, Collins Abigail, Gibbons Melissa, Yang Michele, Desguerre Isabelle, Boddaert Nathalie, Gitiaux Cyril, Rydning Siri LynneORCID, Selmer Kaja K., Urreizti RoserORCID, Garcia-Oguiza Alberto, Osorio Andrés Nascimento, Verdura Edgard, Pujol AuroraORCID, McCurry Hannah R., Landers John E., Agnihotri Sameer, Andriescu E. Corina, Moody Shade B., Phornphutkul Chanika, Sacoto Maria J. Guillen, Begtrup AmberORCID, Houlden HenryORCID, Kirschner Janbernd, Schorling David, Rudnik-Schöneborn Sabine, Strom Tim M., Leiz Steffen, Juliette Kali, Richardson Randal, Yang Ying, Zhang Yuehua, Wang Minghui, Wang Jia, Wang XiaodongORCID, Platzer Konrad, Donkervoort Sandra, Bönnemann Carsten G., Wagner MatiasORCID, Issa Mahmoud Y.ORCID, Elbendary Hasnaa M., Stanley Valentina, Maroofian Reza, Gleeson Joseph G.ORCID, Zaki Maha S.ORCID, Senderek Jan, Pandey Udai BhanORCID
Abstract
AbstractGEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference75 articles.
1. Nussbacher, J. K., Tabet, R., Yeo, G. W. & Lagier-Tourenne, C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron 102, 294–320 (2019). 2. Castello, A., Fischer, B., Hentze, M. W. & Preiss, T. RNA-binding proteins in Mendelian disease. Trends Genet. 29, 318–327 (2013). 3. Dreyfuss, G., Kim, V. N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002). 4. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014). 5. Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|