Expanding the clinical phenotype and genetic spectrum of GEMIN5 disorders: Early‐infantile developmental and epileptic encephalopathies

Author:

Zhang Jing123ORCID,Liu Xinting123ORCID,Zhu Gang123,Wan Lin123ORCID,Liang Yan123,Li Nannan4,Huang Mingwei4ORCID,Yang Guang1235

Affiliation:

1. Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital Beijing China

2. Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital Beijing China

3. Medical School of Chinese People's Liberation Army Beijing China

4. Aegicare (Shenzhen) Technology Co., Ltd Shenzhen China

5. The Second School of Clinical Medicine Southern Medical University Guangzhou China

Abstract

AbstractBackgroundSeveral biallelic truncating and missense variants of the gem nuclear organelle–associated protein 5 (GEMIN5) gene have been reported to cause neurodevelopmental disorders characterized by cerebellar atrophy, intellectual disability, and motor dysfunction. However, the association between biallelic GEMIN5 variants and early‐infantile developmental and epileptic encephalopathies (EIDEEs) has not been reported.PurposeThis study aimed to expand the phenotypic spectrum of GEMIN5 and explore the correlations between epilepsy and molecular sub‐regional locations.MethodsWe performed whole‐exome sequencing in two patients with EIDEE with unexplained etiologies. The damaging effects of variants were predicted using multiple in silico tools and modeling. All reported patients with GEMIN5 pathogenic variants and detailed neurological phenotypes were analyzed to evaluate the genotype–phenotype relationship.ResultsNovel biallelic GEMIN5 variants were identified in two unrelated female patients with EIDEE, including a frameshift variant (Hg19, chr5:154284147‐154284148delCT: NM_015465: c.2551_c.2552delCT: p.(Leu851fs*30)), a nonsense mutation (Hg19, chr5:154299603‐154299603delTinsAGA: NM_015465: c.1523delTinsAGA: p.(Leu508*)), and two missense variants (Hg19, chr5:154282663T > A: NM_015465: c.2705T > A: p.(Leu902Gln) and Hg19, chr5:154281002C > G: NM_015465: c.2911C > G: p.(Gln971Glu)), which were inherited from asymptomatic parents and predicted to be damaging or probably damaging using in silico tools. Except p.Leu508*, all these mutations are located in tetratricopeptide repeat (TPR) domain. Our two female patients presented with seizures less than 1 month after birth, followed by clusters of spasms. Brain magnetic resonance imaging suggests dysgenesis of the corpus callosum and cerebellar hypoplasia. Video electroencephalogram showed suppression‐bursts. Through a literature review, we found 5 published papers reporting 48 patients with biallelic variants in GEMIN5. Eight of 48 patients have epilepsy, and 5 patients started before 1 year old, which reminds us of the relevance between GEMIN5 variants and EIDEE. Further analysis of the 49 GEMIN5 variants in those 50 patients demonstrated that variants in TPR‐like domain or RBS domain were more likely to be associated with epilepsy.ConclusionsWe found novel biallelic variants of GEMIN5 in two individuals with EIDEE and expanded the clinical phenotypes of GEMIN5 variants. It is suggested that the GEMIN5 gene should be added to the EIDEE gene panel to aid in the clinical diagnosis of EIDEE and to help determine patient prognosis.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3