Abstract
AbstractThe rich physical properties of multiatomic crystals are determined, to a significant extent, by the underlying geometry and connectivity of atomic orbitals. The mixing of orbitals with distinct parity representations, such as s and p orbitals, has been shown to be useful for generating systems that require alternating phase patterns, as with the sign of couplings within a lattice. Here we show that by breaking the symmetries of such mixed-orbital lattices, it is possible to generate synthetic magnetic flux threading the lattice. We use this insight to experimentally demonstrate quadrupole topological insulators in two-dimensional photonic lattices, leveraging both s and p orbital-type modes. We confirm the nontrivial quadrupole topology by observing the presence of protected zero-dimensional states, which are spatially confined to the corners, and by confirming that these states sit at mid-gap. Our approach is also applicable to a broader range of time-reversal-invariant synthetic materials that do not allow for tailored connectivity, and in which synthetic fluxes are essential.
Funder
Deutsche Forschungsgemeinschaft
United States Department of Defense | United States Navy | Office of Naval Research
Moore Postdoctoral Fellowship at Princeton University
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献