p‐Orbital Higher‐Order Topological Corner States in 2D Photonic Su–Schrieffer–Heeger Lattices

Author:

Bongiovanni Domenico12,Hu Zhichan1,Wang Ziteng1,Wang Xiangdong1,Jukić Dario3,Hu Yi1,Song Daohong14,Morandotti Roberto2,Chen Zhigang14,Buljan Hrvoje15ORCID

Affiliation:

1. The MOE Key Laboratory of Weak‐Light Nonlinear Photonics TEDA Applied Physics Institute and School of Physics Nankai University 23 HongDa St. Tianjin 300457 China

2. INRS‐EMT 1650 Blvd. Lionel‐Boulet Varennes Quebec J3X 1S2 Canada

3. Faculty of Civil Engineering University of Zagreb A. Kačića Miošića 26 Zagreb 10000 Croatia

4. Collaborative Innovation Center of Extreme Optics Shanxi University 92 WuCheng St. Taiyuan Shanxi 030006 China

5. Department of Physics Faculty of Science University of Zagreb Bijenička c. 32 Zagreb 10000 Croatia

Abstract

AbstractHigher‐order topological insulators (HOTIs) have attracted much attention in photonics partly because of the robust and highly confined corner modes they support. The growing availability of synthetic multi‐orbital platforms has recently stimulated research focus on the interplay between HOTIs and orbital degree of freedom. In this work, the topological properties of the two‐dimensional (2D) Su–Schrieffer–Heeger (SSH) model with ‐orbital degree of freedom are explored and ‐orbital topological corner states in a laser‐written photonic 2D SSH lattice are experimentally observed. It is shown that the ‐band 2D SSH model is a HOTI, where zero‐energy orbital corner states appear either as in‐gap states or as bound states in the continuum (BICs). Chiral symmetry is sufficient for topological protection of the in‐gap ‐orbital corner states, but not for their BIC counterparts because of the hybridization effect within the bulk continuum. The multipole chiral number is employed as an optimal topological invariant to characterize the ‐orbital HOTIs. The flexibility of tuning the orbital couplings offers an extra degree of manipulation for the BICs, which may be useful for the development of novel photonic devices.

Funder

National Basic Research Program of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3