Abstract
AbstractAs one of the most promising alternatives to graphite negative electrodes, silicon oxide (SiOx) has been hindered by its fast capacity fading. Solid electrolyte interphase (SEI) aging on silicon SiOx has been recognized as the most critical yet least understood facet. Herein, leveraging 3D focused ion beam-scanning electron microscopy (FIB-SEM) tomographic imaging, we reveal an exceptionally characteristic SEI microstructure with an incompact inner region and a dense outer region, which overturns the prevailing belief that SEIs are homogeneous structure and reveals the SEI evolution process. Through combining nanoprobe and electron energy loss spectroscopy (EELS), it is also discovered that the electronic conductivity of thick SEI relies on the percolation network within composed of conductive agents (e.g., carbon black particles), which are embedded into the SEI upon its growth. Therefore, the free growth of SEI will gradually attenuate this electron percolation network, thereby causing capacity decay of SiOx. Based on these findings, a proof-of-concept strategy is adopted to mechanically restrict the SEI growth via applying a confining layer on top of the electrode. Through shedding light on the fundamental understanding of SEI aging for SiOx anodes, this work could potentially inspire viable improving strategies in the future.
Funder
Shenzhen Science and Technology Innovation Commission
CAST Innovation Foundation
Sun Yat-sen University
DOE | LDRD | Argonne National Laboratory
Guangdong Science and Technology Department
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献