Diatom-Based Artificial Anode—Uniform Coating of Intrinsic Carbon to Enhance Lithium Storage

Author:

Luo Junlong1,Cai Jun1ORCID,Gong De1ORCID,Guo Aoping2,Wang Jaw-Kai3,Zhang Jiangtao3

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

2. College of Chemistry, Beijing Normal University, Beijing 100083, China

3. Shenzhan Jawkai Bioengineering R&D Center Co., Ltd., Shenzhen 518055, China

Abstract

Pursuing improved electrode materials is essential for addressing the challenges associated with large-scale Li-ion battery applications. Specifically, silicon oxide (SiOx) has emerged as a promising alternative to graphite anodes, despite issues related to volume expansion and rapid capacity degradation. In this study, we synthesized carbon-coated SiOx using diatom biomass derived from artificially cultured diatoms. However, the inherent carbon content from diatoms poses a significant challenge for the electrochemical performance of diatom-based anodes in large-scale applications. Subsequently, we conducted further research and demonstrated excellent performance with a carbon content of 33 wt.% as anodes. Additionally, real-time characterization of the carbonization process was achieved using thermogravimetry coupled with infrared spectroscopy and gas chromatography mass spectrometry (TG-FTIR-GCMS), revealing the emission of CO and C3O2 during carbonization. Furthermore, electrochemical tests of the processed diatom and carbon (PD@C) anode exhibited outstanding rate capability (~500 mAh g−1 at 2 A g−1), high initial Coulomb efficiency (76.95%), and a DLi+ diffusion rate of 1.03 × 10−12 cm2 s−1. Moreover, structural characterization techniques such as HRTEM-SAED were employed, along with DFT calculations, to demonstrate that the lithium storage process involves not only reversible transport in Li2Si2O5 and Li22Si5, but also physical adsorption between the PD and C layers. Exploring the integration of diatom frustules with the intrinsic carbon content in the fabrication of battery anodes may contribute to a deeper understanding of the mechanisms behind their successful application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3