Abstract
AbstractCharge density wave (CDW) is a startling quantum phenomenon, distorting a metallic lattice into an insulating state with a periodically modulated charge distribution. Astonishingly, such modulations appear in various patterns even within the same family of materials. Moreover, this phenomenon features a puzzling diversity in its dimensional evolution. Here, we propose a general framework, unifying distinct trends of CDW ordering in an isoelectronic group of materials, 2H-MX2 (M = Nb, Ta and X = S, Se). We show that while NbSe2 exhibits a strongly enhanced CDW order in two dimensions, TaSe2 and TaS2 behave oppositely, with CDW being absent in NbS2 entirely. Such a disparity is demonstrated to arise from a competition of ionic charge transfer, electron-phonon coupling, and electron correlation. Despite its simplicity, our approach can, in principle, explain dimensional dependence of CDW in any material, thereby shedding new light on this intriguing quantum phenomenon and its underlying mechanisms.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献