Abstract
AbstractSite-directed insertion is a powerful approach for generating mutant alleles, but low efficiency and the need for customisation for each target has limited its application. To overcome this, we developed a highly efficient targeted insertional mutagenesis system, CRIMP, and an associated plasmid toolkit, CRIMPkit, that disrupts native gene expression by inducing complete transcriptional termination, generating null mutant alleles without inducing genetic compensation. The protocol results in a high frequency of integration events and can generate very early targeted insertions, during the first cell division, producing embryos with expression in one or both halves of the body plan. Fluorescent readout of integration events facilitates selection of successfully mutagenized fish and, subsequently, visual identification of heterozygous and mutant animals. Together, these advances greatly improve the efficacy of generating and studying mutant lines. The CRIMPkit contains 24 ready-to-use plasmid vectors to allow easy and complete mutagenesis of any gene in any reading frame without requiring custom sequences, modification, or subcloning.
Funder
AFM-Téléthon
Department of Health | National Health and Medical Research Council
University of Pennsylvania Orphan Disease Center in partnership with Cure CMD
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献