Abstract
AbstractThe strange metallic regime across a number of high-temperature superconducting materials presents numerous challenges to the classic theory of Fermi liquid metals. Recent measurements of the dynamical charge response of strange metals, including optimally doped cuprates, have revealed a broad, featureless continuum of excitations, extending over much of the Brillouin zone. The collective density oscillations of this strange metal decay into the continuum in a manner that is at odds with the expectations of Fermi liquid theory. Inspired by these observations, we investigate the phenomenology of bosonic collective modes and the particle-hole excitations in a class of strange metals by making an analogy to the phonons of classical lattices falling apart across an unconventional jamming-like transition associated with the onset of rigidity. By making comparisons to the experimentally measured dynamical response functions, we reproduce many of the qualitative features using the above framework. We conjecture that the dynamics of electronic charge density over an intermediate range of energy scales in a class of strongly correlated metals can be at the brink of a jamming-like transition.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference51 articles.
1. Pines, D. & Nozières, P. Theory of Quantum Liquids: Normal Fermi Liquids (CRC Press, 2018).
2. Vig, S. et al. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS). SciPost Phys. 3, 026 (2017).
3. Mitrano, M. et al. Anomalous density fluctuations in a strange metal. Proc. Natl Acad. Sci. USA 115, 5392–5396 (2018).
4. Husain, A. A. et al. Crossover of charge fluctuations across the strange metal phase diagram. Phys. Rev. X 9, 041062 (2019).
5. Husain, A. A. et al. Observation of Pines’ Demon in Sr2RuO4. https://arxiv.org/abs/2007.06670 (2020).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献