Abstract
AbstractDNA ligase I (LIG1) catalyzes the ligation of the nick repair intermediate after gap filling by DNA polymerase (pol) β during downstream steps of the base excision repair (BER) pathway. However, how LIG1 discriminates against the mutagenic 3′-mismatches incorporated by polβ at atomic resolution remains undefined. Here, we determine the X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncover the ligase strategies that favor or deter the ligation of base substitution errors. Our structures reveal that the LIG1 active site can accommodate a G:T mismatch in the wobble conformation, where an adenylate (AMP) is transferred to the 5′-phosphate of a nick (DNA-AMP), while it stays in the LIG1-AMP intermediate during the initial step of the ligation reaction in the presence of an A:C mismatch at the 3′-strand. Moreover, we show mutagenic ligation and aberrant nick sealing of dG:T and dA:C mismatches, respectively. Finally, we demonstrate that AP-endonuclease 1 (APE1), as a compensatory proofreading enzyme, removes the mismatched bases and interacts with LIG1 at the final BER steps. Our overall findings provide the features of accurate versus mutagenic outcomes coordinated by a multiprotein complex including polβ, LIG1, and APE1 to maintain efficient repair.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献