Affiliation:
1. Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, FL 32610 , United States
2. Department of Anatomy and Cell Biology, University of Florida , Gainesville, FL 32610 , United States
Abstract
Abstract
DNA ligase (LIG) I and IIIα finalize base excision repair (BER) by sealing a nick product after nucleotide insertion by DNA polymerase (pol) β at the downstream steps. We previously demonstrated that a functional interplay between polβ and BER ligases is critical for efficient repair, and polβ mismatch or oxidized nucleotide insertions confound the final ligation step. Yet, how targeting downstream enzymes with small molecule inhibitors could affect this coordination remains unknown. Here, we report that DNA ligase inhibitors, L67 and L82-G17, slightly enhance hypersensitivity to oxidative stress-inducing agent, KBrO3, in polβ+/+ cells more than polβ-/- null cells. We showed less efficient ligation after polβ nucleotide insertions in the presence of the DNA ligase inhibitors. Furthermore, the mutations at the ligase inhibitor binding sites (G448, R451, A455) of LIG1 significantly affect nick DNA binding affinity and nick sealing efficiency. Finally, our results demonstrated that the BER ligases seal a gap repair intermediate by the effect of polβ inhibitor that diminishes gap filling activity. Overall, our results contribute to understand how the BER inhibitors against downstream enzymes, polβ, LIG1, and LIGIIIα, could impact the efficiency of gap filling and subsequent nick sealing at the final steps leading to the formation of deleterious repair intermediates.
Funder
National Institute of General Medical Sciences
Publisher
Oxford University Press (OUP)