Chemically tailored block copolymers for highly reliable sub-10-nm patterns by directed self-assembly

Author:

Maekawa ShinsukeORCID,Seshimo Takehiro,Dazai Takahiro,Sato Kazufumi,Hatakeyama-Sato Kan,Nabae YutaORCID,Hayakawa TeruakiORCID

Abstract

AbstractWhile block copolymer (BCP) lithography is theoretically capable of printing features smaller than 10 nm, developing practical BCPs for this purpose remains challenging. Herein, we report the creation of a chemically tailored, highly reliable, and practically applicable block copolymer and sub-10-nm line patterns by directed self-assembly. Polystyrene-block-[poly(glycidyl methacrylate)-random-poly(methyl methacrylate)] (PS-b-(PGMA-r-PMMA) or PS-b-PGM), which is based on PS-b-PMMA with an appropriate amount of introduced PGMA (10–33 mol%) is quantitatively post-functionalized with thiols. The use of 2,2,2-trifluoroethanethiol leads to polymers (PS-b-PGFMs) with Flory–Huggins interaction parameters (χ) that are 3.5–4.6-times higher than that of PS-b-PMMA and well-defined higher-order structures with domain spacings of less than 20 nm. This study leads to the smallest perpendicular lamellar domain size of 12.3 nm. Furthermore, thin-film lamellar domain alignment and vertical orientation are highly reliably and reproducibly obtained by directed self-assembly to yield line patterns that correspond to a 7.6 nm half-pitch size.

Funder

MEXT | Japan Society for the Promotion of Science

JST SPRING, Grant Number JPMJSP2106

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3