Abstract
AbstractMott threshold switching, which is observed in quantum materials featuring an electrically fired insulator-to-metal transition, calls for delicate control of the percolative dynamics of electrically switchable domains on a nanoscale. Here, we demonstrate that embedded metallic nanoparticles (NP) dramatically promote metastability of switchable metallic domains in single-crystal-like VO2 Mott switches. Using a model system of Pt-NP-VO2 single-crystal-like films, interestingly, the embedded Pt NPs provide 33.3 times longer ‘memory’ of previous threshold metallic conduction by serving as pre-formed ‘stepping-stones’ in the switchable VO2 matrix by consecutive electical pulse measurement; persistent memory of previous firing during the application of sub-threshold pulses was achieved on a six orders of magnitude longer timescale than the single-pulse recovery time of the insulating resistance in Pt-NP-VO2 Mott switches. This discovery offers a fundamental strategy to exploit the geometric evolution of switchable domains in electrically fired transition and potential applications for non-Boolean computing using quantum materials.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献