Piezo strain–controlled phase transition in single-crystalline Mott switches for threshold-manipulated leaky integrate-and-fire neurons

Author:

Lee Dong Kyu12ORCID,Lee Sungwon12ORCID,Sim Hyeji1ORCID,Park Yunkyu1ORCID,Choi Si-Young1ORCID,Son Junwoo12ORCID

Affiliation:

1. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

2. Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.

Abstract

Electrical manipulation of the metal-insulator transition (MIT) in quantum materials has attracted considerable attention toward the development of ultracompact neuromorphic devices because of their stimuli-triggered transformations. VO 2 is expected to undergo abrupt electronic phase transition by piezo strain near room temperature; however, the unrestricted integration of defect-free VO 2 films on piezoelectric substrates is required to fully exploit this emerging phenomenon in oxide heterostructures. Here, we demonstrate the integration of single-crystalline VO 2 films on highly lattice-mismatched PMN-PT piezoelectric substrates using a single-crystal TiO 2 -nanomembrane (NM) template. Using our strategy on heterogeneous integration, single-crystal–like steep transition was observed in the defect-free VO 2 films on TiO 2 -NM-PMN-PT. Unprecedented T MI modulation (5.2 kelvin) and isothermal resistance of VO 2R / R ( E g ) ≈ 18,000% at 315 kelvin] were achieved by the efficient strain transfer–induced MIT, which cannot be achieved using directly grown VO 2 /PMN-PT substrates. Our results provide a fundamental strategy to realize a single-crystalline artificial heterojunction for promoting the application of artificial neurons using emergent materials.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3