Abstract
AbstractUniversal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献