Optical neural network via loose neuron array and functional learning

Author:

Huo Yuchi,Bao HujunORCID,Peng Yifan,Gao Chen,Hua Wei,Yang Qing,Li Haifeng,Wang Rui,Yoon Sung-Eui

Abstract

AbstractThis research proposes a deep-learning paradigm, termed functional learning (FL), to physically train a loose neuron array, a group of non-handcrafted, non-differentiable, and loosely connected physical neurons whose connections and gradients are beyond explicit expression. The paradigm targets training non-differentiable hardware, and therefore solves many interdisciplinary challenges at once: the precise modeling and control of high-dimensional systems, the on-site calibration of multimodal hardware imperfectness, and the end-to-end training of non-differentiable and modeless physical neurons through implicit gradient propagation. It offers a methodology to build hardware without handcrafted design, strict fabrication, and precise assembling, thus forging paths for hardware design, chip manufacturing, physical neuron training, and system control. In addition, the functional learning paradigm is numerically and physically verified with an original light field neural network (LFNN). It realizes a programmable incoherent optical neural network, a well-known challenge that delivers light-speed, high-bandwidth, and power-efficient neural network inference via processing parallel visible light signals in the free space. As a promising supplement to existing power- and bandwidth-constrained digital neural networks, light field neural network has various potential applications: brain-inspired optical computation, high-bandwidth power-efficient neural network inference, and light-speed programmable lens/displays/detectors that operate in visible light.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3