Pre-sensor computing with compact multilayer optical neural network

Author:

Huang Zheng12ORCID,Shi Wanxin12ORCID,Wu Shukai12ORCID,Wang Yaode12ORCID,Yang Sigang12ORCID,Chen Hongwei12ORCID

Affiliation:

1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

2. Beijing National Research Center for Information Science and Technology, Beijing 100084, China.

Abstract

Moving computation units closer to sensors is becoming a promising approach to addressing bottlenecks in computing speed, power consumption, and data storage. Pre-sensor computing with optical neural networks (ONNs) allows extensive processing. However, the lack of nonlinear activation and dependence on laser input limits the computational capacity, practicality, and scalability. A compact and passive multilayer ONN (MONN) is proposed, which has two convolution layers and an inserted nonlinear layer, performing pre-sensor computations with designed passive masks and a quantum dot film for incoherent light. MONN has an optical length as short as 5 millimeters, two orders of magnitude smaller than state-of-the-art lens-based ONNs. MONN outperforms linear single-layer ONN across various vision tasks, off-loading up to 95% of computationally expensive operations into optics from electronics. Motivated by MONN, a paradigm is emerging for mobile vision, fulfilling the demands for practicality, miniaturization, and low power consumption.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3