Affiliation:
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
2. Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
Abstract
Moving computation units closer to sensors is becoming a promising approach to addressing bottlenecks in computing speed, power consumption, and data storage. Pre-sensor computing with optical neural networks (ONNs) allows extensive processing. However, the lack of nonlinear activation and dependence on laser input limits the computational capacity, practicality, and scalability. A compact and passive multilayer ONN (MONN) is proposed, which has two convolution layers and an inserted nonlinear layer, performing pre-sensor computations with designed passive masks and a quantum dot film for incoherent light. MONN has an optical length as short as 5 millimeters, two orders of magnitude smaller than state-of-the-art lens-based ONNs. MONN outperforms linear single-layer ONN across various vision tasks, off-loading up to 95% of computationally expensive operations into optics from electronics. Motivated by MONN, a paradigm is emerging for mobile vision, fulfilling the demands for practicality, miniaturization, and low power consumption.
Publisher
American Association for the Advancement of Science (AAAS)